Christopher Wang
Assistant Professor
Biology
Ambrose University
Canada
Biography
I recently joined the faculty of Ambrose University in Fall 2017. I was born and raised in Taipei, Taiwan, and received my high school educations in Buenos Aires, Argentina. My interest in cellular and molecular biology stemmed from two fascinating electron microscopy courses taken at the University of Lethbridge during my undergraduate studies. When I was a graduate student at the University of Calgary, I was working on gaining better understanding of the mechanisms that control cell division cycle using the African clawed frog, Xenopus laevis, and human tissue culture cells. Subsequently, I moved to the University of Minnesota for a brief one year post-doctoral fellowship to study the centrosome replication in mammalian cells. Currently, I am interested in understanding how stem cells maintain a proper balance between proliferation and differentiation using the germ line of free-living nematodes, Caenorhabditis elegans, and the human tissue culture cells as models. In the past three years, I have taught a variety of non-major and major biology courses by incorporating a combination of learner-centered, active learning, and team-based learning pedagogies to facilitate students’ learning. My ultimate goal is to make each lecture a positive learning experience with the hope that all students would have successful classroom experiences, and are able to apply the obtained knowledge and skills to their future endeavors.
Research Interest
Stem cells have the capacity to divide indefinitely into progeny cells that can continue as stem cells (i.e. self-renewal/proliferation) or differentiate into more specialized cells. Excessive stem cell proliferation may lead to tumour formation, whereas over differentiation could result in developmental defects. Therefore, an appropriate balance between proliferation and differentiation decision must be maintained in order for stem cells to function properly. The highly conserved GLP-1/Notch signaling pathway is a key regulator in governing this balance in many metazoans.