Charles Després
Professor
Biological Sciences
Brock University
Canada
Biography
Professor Després is an expert molecular biologist and biochemist studying signaling pathways involved in plant immunity, with over 20 years of experience in this field. He is known internationally through his paradigm-shifting discoveries published in high-impact journals. Charles has received numerous prestigious awards, including a Tier II Canada Research Chair and the C.D. Nelson Award from the Canadian Society of Plant Biologists. Aside from his passion for basic research, Charles is working on developing biotechnological and chemical solutions to the emerging problem of pathogen resistance to common fungicides used for crop protection. Recently, the Després Lab has discovered the receptor that detects the immune-hormone salicylic acid and allows plants to mount an immune response. Charles is currently developing a technology platform for target-based agrochemical discovery. His goal is to position Brock University as the Canadian hub for agrochemical discovery, providing solutions for the major commercial crops.
Research Interest
The Després lab’s basic research interests are focused on understanding the signal transduction pathway and the biochemical mechanisms by which NPR1 regulates gene expression in the model system Arabidopsis. Given that the salicylic acid-receptor, NPR1, interacts with transition metals, the lab has also an interest in metal chemistry as it relates to proteins. The lab employs a multidisciplinary approach using molecular, biochemical, biophysical, genomic, and chemical tools to reach its objectives.
Publications
-
Shearer, H.L., Wang, L., DeLong, C., Després, C., and Pierre R. Fobert (2009). NPR1 enhances the DNA binding activity of the Arabidopsis bZIP transcription factor TGA7. Botany 87: 561-570.
-
Cheng, Y.T., Germain, H., Wiermer, M., Bi, D., Xu, F., Garcia, A.V., Wirthmueller, L., Després, C., Parker, J.E., Zhang, Y., and Li, X. (2009). Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis. Plant Cell 21: 2503-2516.
-
Boyle P. and Després, C. (2010). Dual-function transcription factors and their entourage. Unique and unifying themes governing two pathogenesis-related genes. Plant Signaling and Behavior. 6: 629-634.
-
Shearer H.L., Cheng Y.T., Wang L., Liu J., Boyle P., Després, C., Zhang Y., Li X., and Fobert, P.R. (2012). Arabidopsis Clade I TGA Transcription Factors Regulate Plant Defenses in an NPR1-Independent Fashion. Mol. Plant Microbe Interact. 25:1459-1468.
-
Rochon, A., Boyle, P., Wignes, T., Fobert, P.R., Després, C. (2006). The co-activator function of the Arabidopsis NPR1 requires the core of its BTB/POZ and the oxidation of C-terminal cysteines. Plant Cell 18: 3670–3685.
-
González-Lamothe, R., Boyle P., Dulude, A., Roy, V., Lezin-Doumbou, C., Kaur, G.S., Bouarab, K., Després, C., Brisson, N. (2008). The transcriptional activator Pti4 is required for the recruitment of a repressosome nucleated by repressor SEBF at the potato PR-10a gene. Plant Cell 20: 3136-3147.
-
Boyle P., Le S.E., Rochon A., Shearer H.L., Murmu J., Chu J.Y., Fobert P.R., Després C. (2009). The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function. Plant Cell 21: 3700-3713.
-
Wu Y., Zhang D., Chu J.Y., Boyle P., Wang Y., Brindle I. D., De Luca V., Després, C. (2012). The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports 1: 639-647.