Global

Biochemistry Experts

Gerben Zylstra

Distinguished Professor
Department of Biochemistry and Microbiology
Rutgers University
Canada

Biography

I am currently working as a Distinguished Professor in Department of Biochemistry and Microbiology in Rutgers University

Research Interest

Molecular and biochemical basis for microbial aromatic hydrocarbon degradation Research in my laboratory is directed toward understanding the mechanisms by which different bacterial strains utilize aromatic compounds as carbon and energy sources. Projects in the laboratory emphasize the use of molecular genetic tools in the analysis of gene (and protein) evolution, the regulation of gene expression, the identification of intermediate compounds in catabolic pathways, and the functional analysis of the enzymes involved. The primary theme for projects in the laboratory is the examination of microbial diversity and how this affects the degradation of aromatic compounds in the environment. For instance, different bacterial strains may utilize different biochemical pathways for the degradation of the same aromatic compound. In contrast, different bacterial strains may degrade an aromatic compound by the same catabolic pathway but possess genes that have diverged widely in their nucleotide sequence. This diversity in nucleotide sequence also plays a role in the specificity and activity of the enzymes produced. Research thus focuses on a detailed biochemical, physiological, and molecular genetic investigation and comparison of different model catabolic pathways in different bacterial genera. Specific areas of research include: (1) site-directed modification of enzymes to understand their function and to perhaps enhance their ability to transform aromatic compounds to oxygenated intermediates, (2) analysis of gene regulation and how this can be used to enhance microbial biodegradation of xenobiotic compounds in the environment, (3) design and use of molecular probes to track genes and their expression in the environment, and (4) construction of hybrid catabolic pathways for the degradation of recalcitrant compounds. The laboratory is currently focusing on the degradation of polycyclic aromatic hydrocarbons by Sphingomonas, Comamonas, and Mycobacterium strains, the degradation of nitrophenols and nitrobenzoates by several different Pseudomonas species, and the degradation of phthalates by P. cepacia, C. testosteroni, and Acinetobacter.

Global Experts from Canada

Global Experts in Subject

Share This Profile
Recent Expert Updates
  • Matthew L Stone
    Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.   Matthew
    Dr. Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone Matthew
    Dr. L Stone Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone
    Dr. L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr. Matthew L Stone
    Dr. Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  R Sameh
    Dr. R Sameh
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   R Ismail,
    Dr. R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Sameh R Ismail,
    Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   Sameh R Ismail,
    Dr. Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   William
    Dr. William
    pediatrics
    Maimonides Medical Center
    United States of America