Heather Trajano
Assistant Professor
Chemistry
The University of British Columbia
Canada
Biography
Dr. Heather Trajano is a Assistant Professor at The University of British Columbia, Vancouver Campus. University of California Riverside, 2012, Ph.D. Chemical and Environmental Engineering University of Alberta, 2007, B.Sc. Chemical Engineering Co-op
Research Interest
The Forest Products Association of Canada (FPAC) recently concluded that pulp, paper, and saw mills could co-produce new, high value bioenergy, biochemicals, and biomaterials with current outputs. Based on this report, they challenged companies, governments and other partners to generate an additional $20 billion in economic activity from new innovations and markets by 2020. The goal of my research is to make large-scale biorefineries a reality by examining and harnessing the fundamental kinetic and transport phenomena of fractionation and catalysis for maximum economic and environmental benefit. The first step in the production of chemicals and fuels from cellulosic biomass is to produce reactive intermediates. If this initial fractionation is done poorly, the efficiency of all the downstream processes decreases; if it is done well then all the downstream processes are made easier. Hydrothermal or water-only hydrolysis removes hemicellulose, extractives and some lignin from biomass, has reduced capital and operating costs compared to other strategies but the costs are still too high for commercial implementation. More work is needed. Flowthrough Pretreatment of Softwoods: Fundamentals and Applications Many pretreatment strategies rely on batch reactors, however fixed bed flowthrough reactors have also been shown to remove significant amounts of lignin and hemicellulose and produce readily convertible solids from corn stover, poplar, and switchgrass. But little work has been done using regionally important feedstocks such softwoods. By applying this unique reactor system to softwoods, detailed product profiles of softwood deconstruction will be developed in order to build kinetic models as well as heat and mass transfer models that will lead to new pretreatment strategies. As pretreatment products are identified in the solution, possible purification operations will be explored in order to determine the possibility of separating carbohydrate fragments from lignin fragments. The separation of these chemicals would create further opportunities for value added end products. Recovery and Purification of Extractives Many types of forestry biomass contain signature extractives, soluble compounds with potential uses as nutraceuticals and pharmaceuticals. Western red cedar, B.C.’s provincial tree, contains beta-thujaplicin which has antimicrobial and anti-tumour properties. My group seeks to generate a process for the extraction and purification of this high-value extractive. The Forest Products Association of Canada (FPAC) recently concluded that pulp, paper, and saw mills could co-produce new, high value bioenergy, biochemicals, and biomaterials with current outputs. Based on this report, they challenged companies, governments and other partners to generate an additional $20 billion in economic activity from new innovations and markets by 2020. The goal of my research is to make large-scale biorefineries a reality by examining and harnessing the fundamental kinetic and transport phenomena of fractionation and catalysis for maximum economic and environmental benefit. The first step in the production of chemicals and fuels from cellulosic biomass is to produce reactive intermediates. If this initial fractionation is done poorly, the efficiency of all the downstream processes decreases; if it is done well then all the downstream processes are made easier. Hydrothermal or water-only hydrolysis removes hemicellulose, extractives and some lignin from biomass, has reduced capital and operating costs compared to other strategies but the costs are still too high for commercial implementation. More work is needed. Flowthrough Pretreatment of Softwoods: Fundamentals and Applications Many pretreatment strategies rely on batch reactors, however fixed bed flowthrough reactors have also been shown to remove significant amounts of lignin and hemicellulose and produce readily convertible solids from corn stover, poplar, and switchgrass. But little work has been done using regionally important feedstocks such softwoods. By applying this unique reactor system to softwoods, detailed product profiles of softwood deconstruction will be developed in order to build kinetic models as well as heat and mass transfer models that will lead to new pretreatment strategies. As pretreatment products are identified in the solution, possible purification operations will be explored in order to determine the possibility of separating carbohydrate fragments from lignin fragments. The separation of these chemicals would create further opportunities for value added end products. Recovery and Purification of Extractives Many types of forestry biomass contain signature extractives, soluble compounds with potential uses as nutraceuticals and pharmaceuticals. Western red cedar, B.C.’s provincial tree, contains beta-thujaplicin which has antimicrobial and anti-tumour properties. My group seeks to generate a process for the extraction and purification of this high-value extractive. Chemocatalytic Conversion of Biomass An emerging biomass processing paradigm is hydrogenolysis in which biomass is subjected to hydrolysis in the presence of a metal catalyst with a hydrogen vapor space. As sugar monomers are released from the biomass they are instantaneously hydrogenated on the metal catalyst to produce sorbitols which can be further processed into fuels or polymers such as polyester. Most work to date has been done with idealized substrates such microcrystalline cellulose. The work to date is promising but real biomass is a complex material with hundreds of compounds that could interfere with the desired reactions. Hydrogenolysis with native biomass requires further study. The process is a complex one involving reactants in all three phases as well as two different catalysts. Mass transfer and kinetic models are needed as well as process analyses to identify the aspects in critical need of improvement.