Global

Environmental Sciences Experts

Ulrich Mayer

Professor
Department of Earth, Ocean and Atmospheric Sciences
The University of British Columbia
Canada

Biography

Groundwater Hydrology / Reactive Solute Transport Dipl. Ing. (1993) Universität Stuttgart (Germany); Ph.D. (1999) University of Waterloo. Faculty Member at UBC since 2000 Groundwater Hydrology / Reactive Solute Transport Dipl. Ing. (1993) Universität Stuttgart (Germany); Ph.D. (1999) University of Waterloo. Faculty Member at UBC since 2000

Research Interest

My research concentrates on the geochemical evolution of low-temperature groundwater systems with a focus on groundwater contamination and remediation. Dissolved inorganic and organic chemicals are commonly affected by a variety of physical and chemical processes, which influence their mobility, but also alter the geochemical composition of the aquifer material. This is particularly true in the vadose zone, where the exchange of gases with the atmosphere can enhance the progress of geochemical reaction processes. Due to the complexity of these systems and the strong non-linear coupling between the processes, existing conceptual models are often incomplete and data interpretation from field and laboratory studies is not always intuitive. The main objectives of my research program are: Development of a process-oriented multicomponent reactive transport model, which can be used to investigate these complex systems and which is generally applicable to a large number of reactive transport problems in the fields of environmental sciences and engineering. Numerical analysis of groundwater contamination problems and remediation solutions with the goal to quantify, and potentially improve, existing conceptual models. Investigation of transport and reaction processes in groundwater systems using dissolved and vapor phase gases as natural tracers (Ar and N2) or indicators for biological processes (CH4, CO2, H2, H2S, O2, N2), . The model development is based on the reactive transport model MIN3P (Mayer et. al., 2002 - see "Selected Publications"). MIN3P was designed to investigate reactive transport in saturated and unsaturated porous media in partial equilibrium systems. The model is capable of simulating groundwater flow, advective-dispersive transport of dissolved species and advective-diffusive gas transport directly coupled with a variety of bio-geochemical and inorganic reactions. To date, processes considered are aqueous complexation, oxidation-reduction, gas dissolution-exsolution, ion exchange, surface complexation, mineral dissolution-precipitation, and microbially-mediated degradation reactions. MIN3P has been and is being used to study a number of reactive transport problems including: The generation and fate of acid mine drainage in mine tailings and at reclaimed mine sites. Treatment of contaminated groundwater by permeable reactive barriers and KMnO4. Potential effect of secondary geochemical reactions on the long-term performance of remediation technologies. Natural attenuation of organic contaminants in variably-saturated media. Assessment of physical and chemical parameters controlling microbially-mediated degradation reactions. Development of an improved conceptual model capable of reproducing observed redox zones in natural and contaminated aquifers.

Global Experts from Canada

Global Experts in Subject

Share This Profile
Recent Expert Updates
  • Matthew L Stone
    Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.   Matthew
    Dr. Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone Matthew
    Dr. L Stone Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone
    Dr. L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr. Matthew L Stone
    Dr. Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  R Sameh
    Dr. R Sameh
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   R Ismail,
    Dr. R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Sameh R Ismail,
    Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   Sameh R Ismail,
    Dr. Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   William
    Dr. William
    pediatrics
    Maimonides Medical Center
    United States of America