Global

Environmental Sciences Experts

William Hsieh

Professor
Department of Earth, Ocean and Atmospheric Sciences
The University of British Columbia
Canada

Biography

B.Sc. U.B.C. (1976) (combined honours in Mathematics & Physics); M.Sc. U.B.C. (1978) (Physics); Ph.D. U.B.C. (1981) (Physics and Oceanography). Post-doctoral: Cambridge University (Dept. of Applied Maths. & Theoretical Physics) 1981-82; University of New South Wales (School of Mathematics) 1983-85. Visiting Fellow: Princeton University (Geophysical Fluid Dynamics Laboratory) 1992. President's Prize (1999) (link is external), Canadian Meteorological and Oceanographic Society. Distinguished Scholar in Residence, Peter Wall Institute for Advanced Studies (link is external), U.B.C., 2000. Fellow of the Canadian Meteorological and Oceanographic Society (2010). John Patterson medal (link is external) (2013), Meteorological Service of Canada. B.Sc. U.B.C. (1976) (combined honours in Mathematics & Physics); M.Sc. U.B.C. (1978) (Physics); Ph.D. U.B.C. (1981) (Physics and Oceanography). Post-doctoral: Cambridge University (Dept. of Applied Maths. & Theoretical Physics) 1981-82; University of New South Wales (School of Mathematics) 1983-85. Visiting Fellow: Princeton University (Geophysical Fluid Dynamics Laboratory) 1992. President's Prize (1999) (link is external), Canadian Meteorological and Oceanographic Society. Distinguished Scholar in Residence, Peter Wall Institute for Advanced Studies (link is external), U.B.C., 2000. Fellow of the Canadian Meteorological and Oceanographic Society (2010). John Patterson medal (link is external) (2013), Meteorological Service of Canada.

Research Interest

Machine learning methods and their applications to the environmental sciences Seasonal climate and extreme weather prediction Atmosphere-ocean climate dynamics Machine learning (ML), a major branch of artificial intelligence, has a huge impact on our everyday lives through its ability to recognize complicated, nonlinear signals in large datasets. When we post a letter, the post office uses ML technology to understand our handwriting. Online vendors such as Amazon and Netflix suggest books and movies of interest using ML. Self-driving automobiles promise a revolution in transportation. While most environmental scientists are not familiar with machine learning, ML has been the fastest growing field in the last twenty years, fueled by Apple, Alphabet/Google and Microsoft, the three largest companies in the world by market capitalization according to Wikipedia (link is external). The question that has intrigued me for over two decades has been: How would machine learning impact the environmental sciences? This single question has been the main driving force of my research program. A prominent example of climate variability is the famous El Niño-La Niña phenomenon, an irregular fluctuation of the climate system which produces anomalous warming in the equatorial Pacific during El Niño and cooling during La Niña, with notable influence on the Canada winter climate (link is external). El Niño/La Niña episodes can be forecast with reasonable accuracy 3-12 months in advance. Our group has built models for El Niño/La Niña prediction using artificial neural networks and other ML methods. Our forecasts are updated monthly on our web site http://www.ocgy.ubc.ca/projects/clim.pred/ (link is external) and are included in the IRI ensemble forecasts (link is external). We have developed neural network models for nonlinear principal component analysis, nonlinear canonical correlation analysis, and nonlinear singular spectrum analysis (our codes are freely downloadable (link is external) and have users from over 60 countries). We have identified nonlinear atmospheric teleconnection patterns associated with the El Niño/La Niña, the Arctic Oscillation, the quasi-biennial oscillation and the Madden-Julian oscillation. In the last few years, our research efforts have been directed to the following areas: With general circulation models having spatial resolution too coarse to reveal climate variability at local scales, ML methods have been developed to nonlinearly downscale the model output to finer spatial scales, especially for precipitation and streamflow. Machine learning methods are ideal for extracting information from satellite data. Crop yield prediction models have been developed by applying ML methods to vegetation indices derived from satellite data. ML methods have been used to improve forecasts of air quality over Canadian cities.

Global Experts from Canada

Global Experts in Subject

Share This Profile
Recent Expert Updates
  • Matthew L Stone
    Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.   Matthew
    Dr. Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone Matthew
    Dr. L Stone Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone
    Dr. L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr. Matthew L Stone
    Dr. Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  R Sameh
    Dr. R Sameh
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   R Ismail,
    Dr. R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Sameh R Ismail,
    Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   Sameh R Ismail,
    Dr. Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   William
    Dr. William
    pediatrics
    Maimonides Medical Center
    United States of America