Bernard Lemire
Professor
Biochemistry
University of Alberta
Canada
Biography
Energy generation is a vital process for cellular health. Most aerobic organisms use oxidative phosphorylation in mitochondria to meet the majority of their energy needs. Oxidative phosphorylation is performed by the 4 electron transporting proteins of the mitochondrial respiratory chain (MRC) and the ATP synthase. The MRC is the major cellular source of ATP and impaired energy production leads to a bewildering variety of disease conditions, such as myopathies and encephalomyopathies, heart disease, diabetes, and degenerative syndromes such as Parkinson's disease. MRC function is also intimately linked to aging; the MRC is the major site of reactive oxygen species (ROS) production. ROS can damage proteins, DNA, and other macromolecules and it is the accumulation of damage that is associated with the age-related decline in function. The nematode Caenorhabditis elegans is an excellent model system for investigating the molecular mechanisms of mitochondrial disease and of aging. It is an anatomically simple animal for which a wealth of genetic and developmental information is available. MRC formation requires the expression of 2 genomes, the nuclear and the mitochondrial DNAs (mtDNA). The structure and bioenergetics of the nematode MRC are very similar to the mammalian MRC and the nematode mtDNA is similar in size and gene content to the human mtDNA.
Research Interest
Biochemistry