D. Grant Allen
Chemical Engineering & Applied Chemistry
University of Toronto
Canada
Biography
Dr. D. Grant Allen is currently working as a Professor in the Department of Chemical Engineering & Applied Chemistry, University of Toronto , Canada. His research interests includes Bioprocess engineering and its environmental applications. Biological Waste Treatment: performance and design of biological treatment systems for toxicity reduction in pulp mill effluents, biological treatment of chlorinated organic compounds, biofiltration of air pollutants. Bioconversion of waste water and waste solids into value added fuels, chemicals and materials. Microalgae production from carbon dioxide, sunlight and wastewater for production of biofuels and biochemicals. Biofilm formation and adhesion. Microbiology and floc formation in waste treatment systems and the development of techniques of monitoring microbial communities.. He /she is serving as an editorial member and reviewer of several international reputed journals. Dr. D. Grant Allen is the member of many international affiliations. He/ She has successfully completed his Administrative responsibilities. He /she has authored of many research articles/books related to Bioprocess engineering and its environmental applications. Biological Waste Treatment: performance and design of biological treatment systems for toxicity reduction in pulp mill effluents, biological treatment of chlorinated organic compounds, biofiltration of air pollutants. Bioconversion of waste water and waste solids into value added fuels, chemicals and materials. Microalgae production from carbon dioxide, sunlight and wastewater for production of biofuels and biochemicals. Biofilm formation and adhesion. Microbiology and floc formation in waste treatment systems and the development of techniques of monitoring microbial communities.. Dr. D. Grant Allen is currently working as a Professor in the Department of Chemical Engineering & Applied Chemistry, University of Toronto , Canada. His research interests includes Bioprocess engineering and its environmental applications. Biological Waste Treatment: performance and design of biological treatment systems for toxicity reduction in pulp mill effluents, biological treatment of chlorinated organic compounds, biofiltration of air pollutants. Bioconversion of waste water and waste solids into value added fuels, chemicals and materials. Microalgae production from carbon dioxide, sunlight and wastewater for production of biofuels and biochemicals. Biofilm formation and adhesion. Microbiology and floc formation in waste treatment systems and the development of techniques of monitoring microbial communities.. He /she is serving as an editorial member and reviewer of several international reputed journals. Dr. D. Grant Allen is the member of many international affiliations. He/ She has successfully completed his Administrative responsibilities. He /she has authored of many research articles/books related to Bioprocess engineering and its environmental applications. Biological Waste Treatment: performance and design of biological treatment systems for toxicity reduction in pulp mill effluents, biological treatment of chlorinated organic compounds, biofiltration of air pollutants. Bioconversion of waste water and waste solids into value added fuels, chemicals and materials. Microalgae production from carbon dioxide, sunlight and wastewater for production of biofuels and biochemicals. Biofilm formation and adhesion. Microbiology and floc formation in waste treatment systems and the development of techniques of monitoring microbial communities..
Research Interest
Bioprocess engineering and its environmental applications. Biological Waste Treatment: performance and design of biological treatment systems for toxicity reduction in pulp mill effluents, biological treatment of chlorinated organic compounds, biofiltration of air pollutants. Bioconversion of waste water and waste solids into value added fuels, chemicals and materials. Microalgae production from carbon dioxide, sunlight and wastewater for production of biofuels and biochemicals. Biofilm formation and adhesion. Microbiology and floc formation in waste treatment systems and the development of techniques of monitoring microbial communities.