Global

General Science Experts

Ruiming Xu

Professor
Institute of Biophysics
Chinese Academy of Sciences
China

Biography

1980 - 1984     Zhejiang University, China, B.Sc. in Physics 1984 - 1989  Brandeis University, USA, M.A. (1985) & Ph.D. (1990) in Physics 1989 - 1991  Postdoctoral Fellow, Physics Department, University of Texas at Austin 1991 - 1993  Postdoctoral Associate, Physics Department, SUNY at Stony Brook 1993 - 1996  Visiting Scientist and Staff Associate, Cold Spring Harbor Laboratory 1996 - 2005  Assistant, Associate, and full Professor, Cold Spring Harbor Laboratory 2006 - 2008  Professor, Skirball Institute of Biomolecular Medicine & Department of Pharmacology, New York University School of Medicine 2008 - present  Investigator & Great Wall Professor, Institute of Biophysics, Chinese Academy of Sciences 2016 - present  Professor, University of the Chinese Academy of Sciences (UCAS) Present: Director designate (since 2008), National Laboratory of Protein Science; Director (since 2011), National laboratory of Biomacromolecules; Deputy Director (since Dec. 2015), Institute of Biophysics, CAS.

Research Interest

The main research focus of our group is on structural studies of gene expression and regulation. Two themes of investigation include epigenetic control of gene transcription and mRNA processing: 1. Epigenetic control of gene expression Epigenetic phenomena are stable inheritance of gene expression patterns controlled by higher order chromatin structure that depends on covalent modifications of DNA and histones. Epigenetic control of gene expression plays important roles in many biological processes, such as in cell type specifications during development, as well as in the development of many environment and age related diseases, such as cancer and diabetes. Our research in this area includes structural and functional studies of the catalytic mechanisms of histone modification enzymes, their substrate specificity, the mechanisms by which the enzymatic activities are regulated, the structural basis for the recognition of modified histones, and the mechanism of establishment and maintenance of higher chromatin structure in general. The results of our study will provide important mechanistic insights into the function of epigenetic inheritance in cell differentiation, epigenetic reprogramming in somatic cloning and iPS techniques, epigenetic deregulation in cancer and aging, and the development of therapeutics targeting epigenetic regulators. 2. RNA processing and protein-RNA interaction Post-transcriptional mRNA processing includes 5’-capping, splicing and poly-adenylation at the 3’ end. Our current research focuses on mRNA splicing, as most human genes are alternatively spliced, which results in multiple proteins from a single transcript, thus, greatly increased the complexity of the human proteome. RNA splicing is carried out by the spliceosome, which is a large, dynamic complex composed of more than a hundred proteins and several small nuclear RNAs. Our goal is to elucidate the structural basis for splice sites selection and the molecular mechanism of RNA splicing, which include protein-protein and protein-RNA interaction within the spliceosome, and the interaction between the spliceosome, splicing factors and mRNA. In addition, mRNA splicing is coupled to transcriptional regulation, and our interest also includes structural and functional studies of protein-protein and protein-RNA interactions coupling the two processes.

Publications

  • 3. Yang N.*, Yu Z.Y., Hu M.L., Wang M.Z., Lehmann R.*, Xu R.M.* (2015) Structure of Drosophila Oskar reveals a novel RNA binding protein. Proc. Natl. Acad. Sci .USA 112, 11541-11546.

  • 2. Fang Q.L., Chen P., Wang M.Z., Fang J.N., Yang N., Li G.H.*, Xu R.M.* (2016) Human cytomegalovirus IE1 protein alters the higher order chromatin structure by targeting the acidic patch of the nucleosome. eLife 5, e11911.

  • 1. Jin W.X., Wang Y., Liu C.P., Yang N., Jin M.L., Cong Y., Wang M.Z.*, Xu R.M.* (2016) Structural basis for snRNA recognition by the double WD40-repeat domain of Gemin5. Genes & Dev. 30, 2391-2403.

Global Experts from China

Global Experts in Subject

Share This Profile
Recent Expert Updates
  • Matthew L Stone
    Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.   Matthew
    Dr. Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone Matthew
    Dr. L Stone Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone
    Dr. L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr. Matthew L Stone
    Dr. Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  R Sameh
    Dr. R Sameh
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   R Ismail,
    Dr. R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Sameh R Ismail,
    Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   Sameh R Ismail,
    Dr. Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   William
    Dr. William
    pediatrics
    Maimonides Medical Center
    United States of America