Ming Wen
Full Professor
Chemistry
Tongji University
China
Biography
Dr. Ming WEN received her Ph.D from chemistry department of Kinki University (Japan) in 2002. In 2011 and 2015, she has international communication in Tohoku University (Japan) and Humboldt-Universitätzu Berlin (German), respectively. She joined Tongji University as an associate professor in 2002, and then advanced to full professor in 2009. Her main research area is focus on the chemistry of metal & alloy nanomaterials together with their composites. A series of nanomaterials especially alloy materials at nano- and micro-scales with controllable morphologies and structures are currently investigated through employing various interactions and controlled self-assemblies. Design and preparation of novel nanostructure can be carried out through nanoscience and nanotechnology by the careful controlling of chemical reaction conditions. Based on electron-enhanced catalysis reaction, the fabrication and perform reactivity have been carried out for application in hydrogen generation, environments treatment, and electrodes nanomaterials. Dr. Ming WEN received her Ph.D from chemistry department of Kinki University (Japan) in 2002. In 2011 and 2015, she has international communication in Tohoku University (Japan) and Humboldt-Universitätzu Berlin (German), respectively. She joined Tongji University as an associate professor in 2002, and then advanced to full professor in 2009. Her main research area is focus on the chemistry of metal & alloy nanomaterials together with their composites. A series of nanomaterials especially alloy materials at nano- and micro-scales with controllable morphologies and structures are currently investigated through employing various interactions and controlled self-assemblies. Design and preparation of novel nanostructure can be carried out through nanoscience and nanotechnology by the careful controlling of chemical reaction conditions. Based on electron-enhanced catalysis reaction, the fabrication and perform reactivity have been carried out for application in hydrogen generation, environments treatment, and electrodes nanomaterials.
Research Interest
(1) Nanoalloy catalytic materials (2) Li\Na ion battery electrode materials (3) CO2 selectively catalytic conversion