Dimitris S. Argyropoulos
Professor
Pharmacy
pharma
Finland
Biography
Dr. Argyropoulos received his Ph.D. in Organic Chemistry from McGill University in Montreal, Canada where he also served as a PAPRICAN professor with the Chemistry department. His teaching is primarily related to wood chemistry, biomaterial characterization, carbohydrate, lignin and polymer chemistry. Dr. Argyropoulos is a Fellow of the International Academy of Wood Science and a Fellow of the Canadian Institute of Chemistry. In addition to being a member to a number of professional societies (ACS, TAPPI, PAPTAC), Dr. Argyropoulos serves the editorial boards of five scientific journals as well the board of the International Lignin Institute and a number of International Scientific committees. He has also served as the Division Chair, and Secretary of the Cellulose and Renewable Materials of the American Chemical Society. Dr. Argyropoulos received his Ph.D. in Organic Chemistry from McGill University in Montreal, Canada where he also served as a PAPRICAN professor with the Chemistry department. His teaching is primarily related to wood chemistry, biomaterial characterization, carbohydrate, lignin and polymer chemistry. Dr. Argyropoulos is a Fellow of the International Academy of Wood Science and a Fellow of the Canadian Institute of Chemistry. In addition to being a member to a number of professional societies (ACS, TAPPI, PAPTAC), Dr. Argyropoulos serves the editorial boards of five scientific journals as well the board of the International Lignin Institute and a number of International Scientific committees. He has also served as the Division Chair, and Secretary of the Cellulose and Renewable Materials of the American Chemical Society.
Research Interest
Recent research in his group emerges from a significant finding that wood can be dissolved in Ionic Liquids, allowing for the creation of a variety of novel processing platforms for producing new materials, chemicals and energy. In addition, his group develops new methods based on organic chemistry, NMR spectroscopy and catalysis to modulate, direct and understand the transformations of wood biopolymers during industrial transformations such pulping, bleaching and bio-processing.