Naresh Thadhani
Professor & Chair
Material Science
Georgia Institute of Technology
France
Biography
Dr. Thadhani joined the faculty in the School of Materials Science and Engineering at Georgia Tech in September, 1992. His research focuses on studies of shock-induced physical, chemical, and mechanical changes for processing of novel materials and for probing the deformation and fracture response of metals, ceramics, polymers, and composites, subjected to high-rate impact loading conditions. He has developed state-of-the-art high-strain-rate laboratory which includes 80-mm and 7.62-mm diameter single-stage gas-guns, and a laser-accelerated thin-foil set-up, to perform impact experiments at velocities of 70 to 1200 m/s. The experiments employ time-resolved diagnostics to monitor shock-initiated events with nanosecond resolution employing piezoelectric and piezoresistive stress gauges, VISAR interferometry, Photonic-doppler-velocimetry, and high-speed digital imaging, combined with the ability to recover impacted materials for post-mortem microstructural characterization and determination of other properties. He has built computational capabilities employing continuum simulations for design of experiments and development and validation of constitutive equations, as well as for meso-scale discrete particle numerical analysis (using CTH and ALE3D codes) to determine the effects observed during shock compression of heterogeneous materials, using real microstructures. His current research projects (pictured below) include (a) dynamic shock consolidation of nano-sized and nanocrystalline powders for fabrication of bulk nanocomposite permanent magnets with high energy products; (b) design, processing, characterization and evaluation of structural energetic materials (based on intermetallics, ceramics, thermites, and polymer-composites) and including determining their pressure-volume compressibility characteristics and constitutive mechanochemical behavior; (c) Phase transition and high strain rate mechanical properties of bulk metallic glasses and their composites; and (d) development and validation of constitutive models for high-strain-rate mechanical property characterization of various fcc, bcc, and hcp metals. Dr. Thadhani’s current research group includes a principal research scientist, post-doctoral research fellow, eleven Ph.D. student, and three undergraduate students. He has graduated more than 30 Ph.D. and M.S. students. Dr. Thadhani is fellow of the American Physical Society (APS) and of ASM International. He is author of more than two hundred publications in journals and proceedings, including several authoritative reviews and book articles. He is Editor of Springer Series on Shock Compression, Associate Editor of Shock Waves: An International Journal, Key Reader for Metallurgical and Materials Transactions, Past Chair of the APS-SCCM Awards committee, and Past President of the Alpha Sigma Mu, Materials Honor Society. He has served as a consultant for various industries, and has been on advisory boards and organizing committees for many international conferences.
Research Interest
Processing of non-equilibrium phases and alloys with unique microstructures through shock-induced phase transformations and chemical reactions Probing mechanical properties of metals, ceramics, polymer, and composite materials under dynamic high-pressure and high-strain-rate impact loading Design, testing, and analysis of energy-releasing and energy-absorbing materials