Global

Plant Sciences Experts

Jaswinder Singh

Professor
plant biotechnology
Mcgill plant science
France

Biography

Dr. Jaswinder Singh is currently an Associate Professor in the Department of Plant Science, McGill University, Canada. Dr. Singh received his PhD from the University of Sydney and CSIRO Plant Industry, Canberra Australia and did his postdoctoral studies at the University of California Berkeley, U.S.A. His research focuses on the enhancement of quality traits, stress tolerance and bioenergy capability of crop plants using modern genomic, molecular breeding and biotechnological tools. Dr. Singh is an internationally recognized innovator in the use of transposon tagging in cereal crops. His findings have shown for the first time the reversal of epigenetic silencing in plants. Recently, his laboratory discovered a key gene that acts as a switch to determine how a particular plant responds to high humidity and excess rainfall. The research opens up a new epigenetic-based direction for exploration of seed dormancy and Pre Harvest Sprouting (PHS). He has delivered 50 invited talks in international meetings and renowned academic institutes. He has published over 50 research articles in high impact peer reviewed journals, books and conference proceedings

Research Interest

With global climate changes, crop tolerance to biotic and abiotic stresses like heat, drought, salt, water logging, and freezing will become even more critical for future food security worldwide. In order to offset its detrimental effects on crop yields and meet the growing demand for food and feed, it is imperative to develop crops with improved tolerance. In the face of diminishing useable land and water resources, the challenge then is to continue providing sufficient food in an environmentally sustainable manner for the rapidly expanding world population that is expected to reach over 9 billion by the year 2050. Conventional plant breeding programs alone will clearly not be enough to overcome the colossal dual obstacles of climate change and ensuring global food security: Species survival and enhancement depends on genetic diversity, which allows them to cope with changing biotic and abiotic conditions.  Yet, as plant breeders in the past focused their efforts on improving qualities such as uniformity and yield, other important genes fundamental to future survival were unintentionally lost; for example, disease and pest resistance genes. 

Global Experts from France

Global Experts in Subject

Share This Profile
Recent Expert Updates
  • Matthew L Stone
    Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.   Matthew
    Dr. Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone Matthew
    Dr. L Stone Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone
    Dr. L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr. Matthew L Stone
    Dr. Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  R Sameh
    Dr. R Sameh
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   R Ismail,
    Dr. R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Sameh R Ismail,
    Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   Sameh R Ismail,
    Dr. Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   William
    Dr. William
    pediatrics
    Maimonides Medical Center
    United States of America