Jeff Gore
Physics
Massachusetts Institute of Technology
Poland
Biography
"Jeff joined the MIT Physics Department as an Assistant Professor in January 2010 after spending the previous three years in the Department as a Pappalardo Fellow working with Alexander van Oudenaarden. With the support of a Hertz Graduate Fellowship, in 2005 he received his PhD from the Physics Department at the University of California, Berkeley. His graduate research in single-molecule biophysics was done in the laboratory of Carlos Bustamante, focusing on the study of twist and torque in single molecules of DNA. Jeff is excited to be in the Physics Department here at MIT, particularly since this is where he studied as an undergraduate in the late ‘90s. Awards and Honors Named 2013 Allen Distinguished Investigator Recipient of 2012 NIH New Innovators Award [1, 2] Named 2011 Pew Scholar in the Biomedical Sciences Recipient of 2011 Outstanding Undergraduate Research Opportunities Program (UROP) Mentor Award Recipient of 2011 Sloan Research Fellowship Recipient of 2011 NSF CAREER Award"
Research Interest
Behavior of populations before collapse – Natural populations can collapse suddenly in deteriorating environmental conditions, and recovery after such a collapse can be exceedingly difficult. Theory predicts that in principle changes in the fluctuations of the population size can be used to anticipate an impending "tipping point" leading to population collapse. Our group has used laboratory yeast populations to experimentally measure these theoretically predicted early warning indicators based on critical slowing down (Dai et al, Science (2012)). In addition to changes in the temporal behavior, we have also found that characteristic spatial patterns emerge near a tipping point (Dai et al, Nature (2013)). These early warning indicators can be observed in producer-freeloader communities as well as in different environmental deteriorations (Chen et al, Nature Communications (2014); Dai et al, PNAS (2015)). On an entirely different scale, we have also found that cell memory loses resilience to environmental perturbations approaching such a critical transition (Axelrod et al, eLife (2015)). More recently, we have collaborated with field ecologists to explore these dynamics in intertidal marine communities and in honey bee colonies, suggesting that critical slowing down provides a powerful framework for studying sudden transitions in a wide range of biological systems.