Anatoly Dymarsky
Assistant Professor
Material Science
Skoltech
Russian Federation
Biography
Anatoly is a theoretical physicist interested in a variety of topics centered around understanding of strongly coupled systems. Strong coupling means that the constituent parts of a complex system cannot be considered in isolation. This is a frequently occurring situation in many areas of physics and related fields. Examples of strong coupling range from interacting elementary particles to complex electric power systems. Advancing understanding of such systems is very challenging but is also very rewarding. Often progress made in one particular area can lead to inter-disciplinary developments across several fields. Anatoly graduated from Princeton University with a PhD in Physics in 2007. He continued as a postdoc at Stanford University and then at the Institute for Advanced Study. Before joining Skoltech in 2013, Anatoly was a senior research associate at University of Cambridge. One of the main topics of Anatoly’s research has been applying holographic correspondence toward strongly coupled quantum field theories (QFTs). Holography is a novel theoretical framework that reformulates QFTs in terms of more transparent classical geometry (gravity) in a curved space. This approach proved to be helpful for an array of interesting problems of high-energy and condensed matter physics. Furthermore, Anatoly relied on holography to describe models of cosmological inflation. Currently, Anatoly is using holography to study quantum entanglement, the quantity which measures to what extent the system in question “is truly quantum”. Another important direction of Anatoly’s research is focused on conformal field theories (CFTs) in various dimensions. CFTs describe points of second order phase transitions, including quantum phase transitions, which are especially important to understand as they frequently occur in many novel systems and materials of practical importance (such as high temperature superconductors). New theoretical developments in this area give hope to effectively “solve”, or predict important properties of various CFTs with help of well-established optimization methods. More recently, Anatoly started working on problems of stability and control of electrical power systems utilizing various techniques of theoretical physics.
Research Interest
Dynamics of strongly coupled systems Applications of holographic correspondence Nonperturbative QFT, conformal bootstrap Quantum Information and dynamics of quantum systems Theoretical aspects of power systems