David J. Tozer
Professor
Department of Chemistry
Durham University
United Kingdom
Biography
David J. Tozer is Professor in the Department of Chemistry.
Research Interest
Electronic structure calculations are becoming an integral part of chemistry research, where they play a vital role in complementing and aiding interpretation of experimental data. To be useful, a method must provide an accurate description of the ground state of a molecule or solid, together with its response to structural, electric and magnetic perturbations. By far the most widely used electronic structure method is Kohn-Sham density functional theory (DFT), whose modest computational cost makes it applicable to large, chemically, physically and biologically relevant systems. The aim of our research is to improve the quality of DFT predictions, particularly in areas where the method is currently deficient. We collaborate with a number of international research groups, notably Helgaker (Oslo, Norway), De Proft and Geerlings (Brussels, Belgium), Ruud (Tromso, Norway), Cohen (Cambridge, UK), O'Hagan (St Andrews, UK) and Williams (Durham, UK).
Publications
-
Peach, M.J.G., Teale, A.M., Helgaker, T. & Tozer, D.J. (2015). Fractional electron loss in approximate DFT and Hartree-Fock theory. Journal of Chemical Theory and Computation 11(11): 5262-5268.
-
Helgaker, T., Knowles, P.J., Lee, T.J., Rice, J.E. & Tozer, D.J. (2015). Foreword. Molecular Physics 113(13-14): 1509-1510.
-
Gledhill, Jonathan D., De Proft, Frank & Tozer, David J. (2016). Range-separation parameter in tuned exchange–correlation functionals: Successive ionizations and the Fukui function. Journal of Chemical Theory and Computation 12(10): 4879-4884.