Tom Burdon
Senior Research
Department of Developmental Biology
Roslin Institute
United Kingdom
Biography
Dr. Tom Burdon is affiliated to Department of Developmental Biology, Roslin Institute, where Dr. Tom Burdon is currently working as Senior Research. Dr. Tom Burdon has authored and co-authored several national and international publications and also working as a reviewer for reputed professional journals. Dr. Tom Burdon is having an active association with different societies and academies around the world. Dr. Tom Burdon made his mark in the scientific community with the contributions and widely recognition from honourable subject experts around the world. Dr. Tom Burdon has received several awards for the contributions to the scientific community. Dr. Tom Burdon major research interest involves The main area of investigation in the lab is how intracellular signals regulate ES cell growth and differentiation. This work focuses principally on the activity of the MAPK and PI3K pathways and involves: i) examining the role of established ES cell regulators (i.e. adaptor protein Grb2), ii) characterising the function of a novel ES cell specific regulator in mouse ES cells (a Grb2-binding protein 1 variant) and iii) investigating signaling cross-talk between pathways. We also aim to further define the core regulatory pathways regulating pluripotency in mammals by comparing cells from different species. To this end, the Roslin Institute has initiated a programme to derive new embryonic cell lines from rats and farm animals. Lineage specific fate determination in the early embryo or ES cells requires the suppression of both pluripotency and alternative differentiated fates. Recent studies suggest that this can be mediated at the post-translational level by micro RNAs. Together with Dr Michael Clinton at the Roslin Institute we have begun examining the role miRNAs play in regulating early embryonic differentiation. .
Research Interest
The main area of investigation in the lab is how intracellular signals regulate ES cell growth and differentiation. This work focuses principally on the activity of the MAPK and PI3K pathways and involves: i) examining the role of established ES cell regulators (i.e. adaptor protein Grb2), ii) characterising the function of a novel ES cell specific regulator in mouse ES cells (a Grb2-binding protein 1 variant) and iii) investigating signaling cross-talk between pathways. We also aim to further define the core regulatory pathways regulating pluripotency in mammals by comparing cells from different species. To this end, the Roslin Institute has initiated a programme to derive new embryonic cell lines from rats and farm animals. Lineage specific fate determination in the early embryo or ES cells requires the suppression of both pluripotency and alternative differentiated fates. Recent studies suggest that this can be mediated at the post-translational level by micro RNAs. Together with Dr Michael Clinton at the Roslin Institute we have begun examining the role miRNAs play in regulating early embryonic differentiation.Â