Global

Biochemistry Experts

Martha Cyert

PUBLIC AFFAIRS ADVISORY COMMITTEE MEMBER
Biochemistry and Molecular Biology
ASBMB
United States of America

Biography

 Dr. Martha Cyert directs a research lab that studies Ca2+-dependent signal transduction, focusing on calcineurin, the highly conserved Ca2+/calmodulin-regulated protein phosphatase that plays critical roles in muscle, immune and neural cells. Dr. Cyert pioneered studies of yeast calcineurin, where her work elucidated conserved aspects of substrate recognition and mechanisms by which the signaling network evolves. Her studies on human calcineurin uncovered the mechanism by which immunosuppressant drugs, FK506 and cyclosporine A, inhibit this enzyme. Current research focuses on establishing the human calcineurin signaling network using both experimental and computational approaches to systematically identify calcineurin targets . Professor Cyert is also an active educator. She received the Dean’s Award for Outstanding Teaching, developed an innovative, inquiry-based, introductory laboratory course that utilizes S.cerevisiae, and a summer transition program for incoming freshman from under resourced schools. She was Senior Associate Vice Provost for Undergraduate Education from 2010-13, serves on the Education committee of the American Society for Cell Biology, and has taught in Cell Biology workshops sponsored by the ASCB in Africa. She directs an NIH-funded graduate training program in Cell and Molecular Biology and is a standing member of the TWD-A study section at NIH. Dr. Cyert is a member of the Stanford Cardiovascular and Bio-X Institutes and served on the Public Affairs Advisory Council for ASBMB. She has been awarded fellowships from the American Cancer Society, the Life Sciences Research Foundation and the Lucille P. Markey Charitable Trust, and was named by Stanford University as a Terman Fellow, a Gabilan Fellow, and as the Thomas W. and Susan B. Ford University Fellow in Undergraduate Education.

Research Interest

 The Cyert lab is identifying signaling networks for calcineurin, the conserved Ca2+/calmodulin-dependent phosphatase, and target of immunosuppressants FK506 and cyclosporin A, in yeast and mammals. Cell biological investigations of target dephosphorylation reveal calcineurin’s many physiological functions. Roles for short linear peptide motifs, or SLiMs, in substrate recognition, network evolution, and regulation of calcineurin activity are being studied.

Global Experts from United States of America

Global Experts in Subject

Share This Profile
Recent Expert Updates
  • Matthew L Stone
    Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.   Matthew
    Dr. Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone Matthew
    Dr. L Stone Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone
    Dr. L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr. Matthew L Stone
    Dr. Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  R Sameh
    Dr. R Sameh
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   R Ismail,
    Dr. R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Sameh R Ismail,
    Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   Sameh R Ismail,
    Dr. Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   William
    Dr. William
    pediatrics
    Maimonides Medical Center
    United States of America