Sue Biggins
Committee Member
Basic Sciences Division
ASCB
United States of America
Biography
As a newly minted researcher a decade ago, Dr. Sue Biggins chose the Fred Hutch because of what it isn’t: It isn’t about playing it safe or working alone. It isn’t about empire building. It’s not full of policies and politics to trip over. It’s all about having the freedom, she said, to do the best, most unconventional science possible. Before she became a researcher, Biggins thought the mechanics of cell division were completely understood. It didn’t take her long to figure out that many questions remained, and she sought to answer some of them. In the Hutch’s Basic Sciences Division, she recently made an important contribution to the study of cell division by figuring out how specialized “cellular machines” known as kinetochores allow cells to separate and distribute their chromosomes accurately
Research Interest
Biggins’ team, stepping away from genetic methods and borrowing from biochemists’ playbook, succeeded in separating the kinetochores from dividing yeast cells and studying them in test tubes for the first time. During cell division, kinetochores act like handles on chromosomes and are under tremendous pressure as fibers pull on these handles to move the chromosomes within the dividing cell. If chromosomes fall off in the midst of this process, they don’t end up in the daughter cell. Biggins and colleagues found the harder the kinetochores are pulled, the harder they attach, like a finger trap toy. This counterintuitive characteristic explains why the process works correctly so often.