Jack Rose
Professor
Biological Sciences
Idaho State University
United States of America
Biography
During my doctoral program at Oregon State University I had the opportunity to conduct research in two quite different areas of endocrine physiology. Those being, (1): the hormonal regulation of blastocyst implantation in the mink, a species exhibiting delayed implantation, and (2): the role of hormones in regulating the onset of winter fur growth in the mink. In the area of reproduction, that work culminated in the demonstration of prolactin receptors in the uterus of this species, which at the time was a novel concept. Today, others have shown that the mammalian uterus expresses genes for both prolactin and the prolactin receptor, strongly suggesting not only endocrine but autocrine and/or paracrine effects of prolactin on the uterus. Much work needs to be done to determine which genes are regulated in the uterus by prolactin and their role in reproductive function. From the fur growth studies, a major contribution was the finding that the pineal hormone melatonin plays a critical role in controlling hair growth in this species, in part, through its inhibitory effects on prolactin secretion. As a professor at Idaho State University, research efforts during my early years were focused principally upon the effects of adrenal hormones in regulating hair growth cycles. We demonstrated that bilateral adrenalectomy of mink, induced almost immediate onset of hair growth cycles, that interestingly, appeared to cycle continuously with only brief, if any, resting (telogen) periods. Thus, instead of only two hair growth cycles each year, such animals might cycle as many as 6 times, or more. Injections of the adenohypophysial hormone ACTH (adrenocorticotropin) into the skin of mink induced local onset of hair growth cycles. This finding contributed to a rapidly growing field of research, wherein others have demonstrated that the skin of mammals expresses most if not all, of the hormones and their receptors that constitute the "stress-response" system. That is, corticotropin releasing hormone (CRH), CRH receptors, ACTH, and ACTH receptors.
Research Interest
Reproduction, blastocyst implantation, uterus, uterine physiology, and glycogen in mink and rats.
Publications
-
Dean, M., J. Hunt, L. Mc Dougal and J. Rose. 2014. Uterine glycogen metabolism during esturs, peri-implantation and pregnancy in mink (Neovison vison). J. Reprod. & Develop
-
Cao, X., Wei, H., Xue, H., Li, X., Zhao, W., Xu, C., Wang, S., Diao, Y., Rose, J.,and B. Xu. 2016. Fecal progesterone concentrations as an indicator of reproductive success in American mink. Animal Reproduction Science, Feb., 165:11
-
Bowman, K., and J. Rose. 2016. Estradiol stimulates glycogen synthesis whereas progesterone promotes glycogen catabolism in the uterus of the American mink (Neovison vison). Animal Science Journal, In Press
-
Cao, X., J. Rose, S-Y Wang, Y. Liu, M. Zhao, M-J Xing, T. Chang and B. Xu. 2016. Glycine increases preimplantation development of mouse oocytes following vitrification at the germinal vesicle stage. Nature Scientific Reports, 6,37262