Physics
Global

Physics Experts

Woowon Kang

Professor
Physics
James Franck Institute
United States of America

Biography

In recent years, my group has been pursuing research on the fractional quantum Hall effect in connection to topological quantum computation. Topological quantum computing is a fascinating interplay of topology, quantum field theory, physics of fractional quantum Hall effect, and theories of quantum computing. The fractional quantum Hall effect is presently the most promising platform among various candidate systems for a topological quantum computer. The global topological protection afforded by the fractional quantum Hall effect produces fault tolerance in a topological quantum computer. A topological quantum computer consequently becomes immune to the effects of local quantum decoherence. A fault-tolerant qubit can be constructed by taking advantage of the non-Abelian braiding statistics of elementary excitations (called anyons), which are thought to exist in certain exotic fractional quantum Hall states. Experimental goals include detection and manipulations of the postulated non-Abelian anyons in quantum interferometers that are constructed from high-quality semiconductor heterostructures. Topics: Quantum Hall Effect, Organic Superconductors In recent years, my group has been pursuing research on the fractional quantum Hall effect in connection to topological quantum computation. Topological quantum computing is a fascinating interplay of topology, quantum field theory, physics of fractional quantum Hall effect, and theories of quantum computing. The fractional quantum Hall effect is presently the most promising platform among various candidate systems for a topological quantum computer. The global topological protection afforded by the fractional quantum Hall effect produces fault tolerance in a topological quantum computer. A topological quantum computer consequently becomes immune to the effects of local quantum decoherence. A fault-tolerant qubit can be constructed by taking advantage of the non-Abelian braiding statistics of elementary excitations (called anyons), which are thought to exist in certain exotic fractional quantum Hall states. Experimental goals include detection and manipulations of the postulated non-Abelian anyons in quantum interferometers that are constructed from high-quality semiconductor heterostructures. Topics: Quantum Hall Effect, Organic Superconductors

Research Interest

Physics

Global Experts from United States of America

Global Experts in Subject

Share This Profile
Recommended Conferences