Alex Compton
Investigator
Center for Cancer Research
National Cancer Institute
United States of America
Biography
Dr. Alex Compton received his Ph.D. in Molecular and Cellular Biology from the University of Washington in 2012. As a doctoral student in the laboratory of Dr. Michael Emerman (Fred Hutchinson Cancer Research Center), he investigated the HIV-1 Vif protein and its target APOBEC3G, revealing lentivirus-driven evolution of host proteins on a million-year time scale. Dr. Compton was the recipient of a Pasteur Foundation Postdoctoral Fellowship and an ANRS (French National Agency on AIDS Research) Grant during his postdoctoral training with Dr. Olivier Schwartz at the Pasteur Institute in Paris, where he made key discoveries on the mechanisms by which the interferon-induced transmembrane (IFITM) proteins restrict HIV-1 infection. These studies provide important insight into the complex ways in which mammalian cells have evolved to counteract viral infections. Because the APOBEC and IFITM proteins restrict the replication of a number of viruses in addition to HIV, this work has broad implications for the understanding of host-pathogen interactions. In 2017, Dr. Compton joined the HIV Dynamics and Replication Program as Head of the Antiviral Immunity and Resistance Section to develop a research program focused on mechanisms of protection mediated by the cell-intrinsic innate immune response, as well as the strategies employed by HIV and emerging viruses to evade or overcome these immune barriers.
Research Interest
innate immunity, molecular biology, retroviruses, host-pathogen interactions, virus evolution
Publications
-
Compton AA, Malik HS, Emerman M. Host gene evolution traces the evolutionary history of ancient primate lentiviruses. Phil. Trans. R. Soc. B. 2013 Sep 19;368(1626):20120496.
-
Compton AA, Bruel T, Porrot F, Mallet A, Sachse M, Euvrard M, Liang C, Casartelli N, Schwartz O. IFITM proteins incorporated into HIV-1 virions impair viral fusion and spread. Cell host & microbe. 2014 Dec 10;16(6):736-47.
-
Compton AA, Roy N, Porrot F, Billet A, Casartelli N, Yount JS, Liang C, Schwartz O. Natural mutations in IFITM3 modulate postâ€translational regulation and toggle antiviral specificity. EMBO reports. 2016 Nov 1;17(11):1657-71.