Global

Orthopaedics Experts

David L. Williamson

Assistant Professor
 Kinesiology, Behavioral Sciences and Education
Pennsylvania State University
United States of America

Biography

Dr. David Williamson’s research seeks to delineate mechanisms that regulate aberrant growth signaling that contribute to skeletal muscle anabolic resistance in type 2 diabetes, obesity, and aging. Given his graduate training in human muscle physiology at the Human Performance Laboratory at Ball State, he expanded my knowledge of muscle physiology during his post-doctoral training at Hershey Medical Center by employing animal and cell models. In doing so, he studied how AMPK activation alters mTOR and mRNA translation in physiological contexts. Then arriving at West Virginia University, he further sought to determine how altered states of AMPK and/or mTOR activation would influence muscle differentiation and/or growth, using cell and mouse models of obesity and aging. Then at the University at Buffalo his laboratory focused on aberrant regulation of mTOR during aging and obesity, establishing the role of the mTOR inhibitor, REDD1, on the development of an anabolic resistant skeletal muscle phenotype. This mechanism may contribute to skeletal muscle cachexia in numerous models, such as type 2 diabetes, obesity, aging, cancer, and muscular dystrophy.

Research Interest

Mechanisms of skeletal muscle anabolic resistance, Interventions that improve insulin sensitivity, Mechanisms of exercise-induced insulin sensitivity

Publications

  • Ray, A.D., Personius, K.E., Williamson, D.L, Dungan, C.M., Dhillon, S.S., Hershberger, P.A. Vitamin D3 intake modulates diaphragm but not peripheral muscle force in young mice. J. Appl. Physiol. 120(10):1124-1131, 2016.

  • Gordon, B.S., Steiner, J.L., Williamson, D.L, Lang, C.H., Kimball, S.R. Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism. Am. J. Physiol: Endo. Metab. 311(1):E157-174, 2016.

  • Dungan C.M., Li, J., Williamson, D.L. Caloric Restriction Normalizes Obesity-Induced Alterations on Regulators of Skeletal Muscle Growth Signaling. Lipids. 51(8):905-912, 2016.

Global Experts from United States of America

Global Experts in Subject

Share This Profile
Recent Expert Updates
  • Matthew L Stone
    Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.   Matthew
    Dr. Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone Matthew
    Dr. L Stone Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone
    Dr. L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr. Matthew L Stone
    Dr. Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  R Sameh
    Dr. R Sameh
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   R Ismail,
    Dr. R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Sameh R Ismail,
    Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   Sameh R Ismail,
    Dr. Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   William
    Dr. William
    pediatrics
    Maimonides Medical Center
    United States of America