Michael V. Kolomiets
Professor, Molecular Biology of Plant Defense Resp
Department of Plant Pathology and Microbiology
Texas A and M University
United States of America
Biography
Dr. Michael V. Kolomiets is Professor, Molecular Biology of Plant Defense Responses at Department of Plant Pathology and Microbiology, Texas A and M University,United States Of America. Got Ph.D., Horticulture (1998), Iowa State University
Research Interest
Functional genomics of maize oxylipin pathways The focus of research interests of my laboratory is to investigate genes and metabolites of lipid-based biochemical and signal transduction pathways and the role they play in plant development and survival in response to pathogens. Key regulatory components of these pathways are lipases, lipoxygenases (LOX), 12-oxo-phytodienoate reductases (OPR). One of the greatest scientific challenges that we face currently in this field is to understand the physiological function of individual genes and isozymes, pathways they initiate and their metabolites. Although we are interested in most aspects of these pathways, our current emphasis is to elucidate functions of individual members of the multigene families of LOXs and OPRs in corn. Using genomics tools we have identified and cloned all members of maize LOX gene family. RNA profiling and other expression data strongly suggest their involvement in disease resistance mechanisms. By using reverse genetics strategy, a project is underway to identify maize mutants in which function of all LOX genes is interrupted by insertions of Mutator transposable elements. To assess function of these genes in defense-responses these mutants will undergo vigorous disease resistance screening, oxylipin profiling via HPLC, GC-MS and other biochemical techniques. The most harmful corn diseases worldwide are those caused by pathogens Fusarium verticillioides and Aspergillus flavus, that produce mycotoxins that are extremely harmful to humans and animals. Therefore, these and other corn diseases are the primary targets of our research program.
Publications
-
Chinchilla-RamÃrez M, Borrego E, DeWitt T, Kolomiets M, Bernal JS (2017) Maize seedling morphology and defence hormone profiles, but not herbivory tolerance, were mediated by domestication and modern breeding. Ann Appl Biol: doi:10.1111/aab.12331
-
Altangerela N, Ariunbold GO, Gorman C, Alkahtani MH, Eli J. Borrego EJ, Dwight Bohlmeyer D, Hemmer P, Kolomiets MV, Yuan JS, and Scully MO (2017) In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. PNAS 114 (13), 3393-3396
-
Wang S, Park Y-S, Yang Y, Borrego EJ , Isakeit T, Xiquan Gao X, Kolomiets MV (2017). Seed-derived ethylene facilitates colonization but not aflatoxin production by Aspergillus flavus in maize. Frontiers Plant Science. 8: 415: doi: 10.3389/fpls.2017.00415