Global

Chemical Engineering Experts

Angela Violi

Professor
Biomedical Engineering and Chemical Engineering
University of Michigan
United States of America

Biography

  Education: University of Naples Federico II PhD ChE ’99 BS ChE ’94 Professional Experience University of Michigan Mechanical Engineering and Chemical Engineering Departments Ann Arbor, Michigan Professor Associate Professor, 2009-present Assistant Professor, 2006-2009 University of Utah Department of Chemistry Salt Lake City, Utah Research Assistant Professor, 2004-2005 Research Associate 1/2002 – 12/2005 Post-doctoral Research Assistant, 1999-2001

Research Interest

Particulate emissions in the nanoparticle size range are related to two pressing environmental problems – the health impact of fine particles and global warming. The problems of both climate change and health effects point to the question of characterizing chemical and physical properties of atmospheric particles, which is obviously related to the relative role of natural and anthropogenic processes in their formation. Combustion is the main process through which man continuously injects particles into the atmosphere. More importantly, these particles are produced at the smallest sizes physically possible in the form of clusters with nanometric dimensions. Therefore, it is clear that it is not possible to give a precise answer to the environmental problems outlined above, without going deeper into the chemistry and physics of the formation of particles at high temperature during combustion processes, and following their subsequent evolution and fate at ambient temperature. The theoretical nano-science we are developing involves a novel multiscale computer simulation approach to study the formation and fate of carbonaceous material. The use of multiscale methods, such as the Kinetic Monte Carlo technique combined with Molecular Dynamics, can make it possible to follow the transformations that occur during nanoparticle formation in a chemically specific way, providing information on both the chemical structure and the configuration of the nanoparticles and young soot particles. This approach provides a connection between the various time scales in the nanoparticle growth and self-assembly problem, together with an unprecedented opportunity for the understanding of the atomistic interactions underlying nanoparticle structures and growth. The Violi research group is developing computational methodologies to bridge the length and time scales in the important area of nanocluster self-assembly via coarse-graining techniques. This powerful new approach will not only have a large impact for understanding combustion-generated carbon nanoparticles, but also in the general area of nanoparticle self-assembly. In short, there is a lifetime of remarkably interesting research to be done in this area, and we are pushing forward this frontier with powerful computer modeling approaches.

Publications

  • A. Violi, G.A. Voth “A multi-scale computational approach for nanoparticle growth in combustion environments” High Performance Computing and Communications, Proceedings Lecture Notes in Computer Science 3726: 938-947 (2005).

  • S. Izvekov, A. Violi “Systematic Coarse-Graining of Nanoparticle Interactions in Molecular Dynamics Simulation” Journal of Physical Chemistry B 109(36): 17019-17024 (2005).

  • D. Wang, A. Violi, D.H. Kim, J.A. Mullholland “Formation of Naphthalene, Indene and Benzene from Cyclopentadiene Pyrolysis: A DFT Study” Journal of Physical Chemistry A, 110(14), 4719-4725 (2006).

  • R. Chang, A. Violi “Insights into the effect of combustion-generated carbon nanoparticles on biological membranes: a computer simulation” Journal of Physical Chemistry B, 110(10). 5073-5083 (2006).

  • S. Izvekov, A. Violi “A Coarse-Grained Molecular Dynamics Study of Carbon Nanoparticle Aggregation”, J. Chem. Theory Comput. 2(3), 504-512 (2006).

Global Experts from United States of America

Global Experts in Subject

Share This Profile
Recent Expert Updates
  • Matthew L Stone
    Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.   Matthew
    Dr. Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone Matthew
    Dr. L Stone Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone
    Dr. L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr. Matthew L Stone
    Dr. Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  R Sameh
    Dr. R Sameh
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   R Ismail,
    Dr. R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Sameh R Ismail,
    Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   Sameh R Ismail,
    Dr. Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   William
    Dr. William
    pediatrics
    Maimonides Medical Center
    United States of America