Global

Mathematics Experts

Konstantin Lurie

Professor
Mathematical Sciences
Worcester Polytechnic Institute
United States of America

Biography

Education: MS Leingrad Polytechnic Institute 1959 PhD Physical-Tech. Institute 1964 DSc, Physical-Tech. Institute 1972 Konstantin's research has, since the early '60s, been focused on optimal control of distributed systems, specifically, on optimal material design. The journal papers and books he published since laid a solid foundation of this discipline, as we know it today. The need for optimal design comes from everyday life and from various technological requirements that put forth numerous challenges demanding better quality, less weight, lower cost, faster operation, etc. Today, these demands cannot be addressed on intuitive basis alone, as was true through centuries of world civilization, but appear to be an object of a special branch of applied mathematics. There are very substantial ties between optimal design and physics, mechanics, biology, and natural science in general; many natural formations—from rocks to birds' wings—demonstrate features that an attentive and smart engineer would call optimal. The optimality concept goes far and wide, it embraces the fields that are, at first sight, well apart, e.g., communication systems and nanostructural design, or traffic control. Through the last decade, Konstantin extrapolated these principles to material dynamics by introducing a novel concept of dynamic materials, i.e., the material formations with properties variable in space and time. These substances can be artificially maintained by traditional engineering means and will serve as adequate controllers of dynamic processes because they will timely respond to environmental changes. In many substantial aspects, dynamic materials remind a living tissue, which is the only known example of a dynamic material from nature. In his work with students, Konstantin tries to encourage their interest to finding resources hidden in a system and to working out the means that could help disclose those resources and make a system smartly designed. Engineering intuition thus receives an additional impulse due to a special contribution from applied mathematics.

Research Interest

Nonconvex Calculus of Variations; Optimal Control and Material Design; Mathematical Theory of Materials

Publications

  • "An Introduction to the Mathematical Theory of Dynamic Materials," Springer, 2007

  • Applied Optimal Control of Distributed Systems - 1993

Global Experts from United States of America

Global Experts in Subject

Share This Profile
Recent Expert Updates
  • Matthew L Stone
    Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.   Matthew
    Dr. Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone Matthew
    Dr. L Stone Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone
    Dr. L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr. Matthew L Stone
    Dr. Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  R Sameh
    Dr. R Sameh
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   R Ismail,
    Dr. R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Sameh R Ismail,
    Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   Sameh R Ismail,
    Dr. Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   William
    Dr. William
    pediatrics
    Maimonides Medical Center
    United States of America