Global

Engineering Experts

Raghvendra V. Cowlagi

Assistant Professor
Mechanical Engineering
Worcester Polytechnic Institute
United States of America

Biography

Education: B.E Electronics Engineering University of Mumbai, India 2003 M. Tech Aerospace Engineering Indian Institute of Technology 2005 Ph.D Aerospace Engineering Georgia Institute of Technology 2011 Autonomous vehicles – aircraft, cars, rovers, over- and underwater vehicles that can move in the real world by themselves without human pilotage – have gained immense importance not only due to the broad spectrum of their potential military and civilian applications, but also due to the concurrent development of sensor technology and embedded systems that enable the realization of true autonomy. These vehicles may be assigned tasks that are dull and/or repetitive, such as mobile surveillance or cleaning and maintenance; tasks that are dangerous for humans, such as military transportation via hostile territory, large-scale fire fighting, and repair and recovery operations in chemical plants and nuclear reactors; or tasks that are prohibitively expensive for humans to execute, such as the exploration of celestial bodies. Unsurprisingly, various theoretical and practical aspects of the development of autonomous mobile vehicles have been vigorously and extensively researched by the robotics, automatic control, and artificial intelligence communities for over four decades. I am interested in several broad research problems related to autonomous vehicles. Firstly, I am interested in the optimal motion planning and control problem, which involves finding control inputs (e.g. steering, throttle) that enable the vehicle’s desired motion. Optimal control theory has been studied for over three hundred years, but new computational strategies are required to develop real-time algorithms. Secondly, I am interested in the intelligent control problem, which involves developing and integrating artificial intelligence (AI) algorithms with control algorithms to enable the vehicle to achieve complex tasks specified in human-like language (e.g. “get me to my workplace ASAP, drop my friend close to his workplace, find a cheap parking spot and wait until I need you again; also save gasoline as much as possible”). AI and automatic control have been traditionally disparate academic disciplines; furthermore, AI and control problems are formulated using fundamentally different mathematical tools, which makes their integration challenging. These challenges are addressed in the new field of hybrid control, which is the focus of my research. Finally, I am interested in the safety analysis of large-scale systems involving autonomous vehicles. These vehicles must interact with existing infrastructure – unmanned aircraft must share airspace with piloted aircraft in the future – and eventually, with human supervisors. Presently, very little is known about formal (mathematically rigorous) analysis of the safety of such systems involving autonomous agents, humans, and physical infrastructure – now known as cyber-physical systems. My research involves a continuous learning process of mathematically dense topics from AI, dynamics, and control. A by-product of this process is that I have come to appreciate the importance of elucidating such topics in simple, everyday language and diagrams. The most important objective of my teaching is to bring to the students mathematically rich material from dynamics and control in easily digestible forms, to the point where the students can identify the mathematics accentuating the underlying concepts, rather than obscuring them.

Research Interest

Autonomous mobile vehicles; Motion planning and optimal control; Hybrid optimal control with applications in aerospace engineering; Formal methods for system safety and reliability

Publications

  • R. V. Cowlagi and P. Tsiotras, "Shortest distance problems in graphs using history-dependent transition costs with application to kinodynamic path planning," in Proceedings of the 2009 American Control Conference, St. Louis, MO, USA, pp. 414 - 419, 9 - 12 Jun 2009

  • Coordinability and consistency in accident causation and prevention: Formal system-theoretic concepts for safety in multilevel systems - 2013

  • Multi-resolution motion planning for autonomous agents via wavelet-based cell decompositions - 2012

  • Hierarchical Motion Planning with Dynamical Feasibility Guarantees for Mobile Robotic Vehicles - 2012

  • Highlights from the literature on accident causation and system safety: Review of major ideas, recent contributions, and challenges - 2011

Global Experts from United States of America

Global Experts in Subject

Share This Profile
Recent Expert Updates
  • Matthew L Stone
    Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.   Matthew
    Dr. Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone Matthew
    Dr. L Stone Matthew
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  L Stone
    Dr. L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr. Matthew L Stone
    Dr. Matthew L Stone
    pediatrics
    University of Virginia Health System; Charlottesville, VA
    United States of America
  • Dr.  R Sameh
    Dr. R Sameh
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   R Ismail,
    Dr. R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Sameh R Ismail,
    Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   Sameh R Ismail,
    Dr. Sameh R Ismail,
    pediatrics
    King Abdul Aziz University
    United Arab Emirates
  • Dr.   William
    Dr. William
    pediatrics
    Maimonides Medical Center
    United States of America