Environmental Sciences

Environmental Sciences Experts

Abinash Agrawal

Wright State University
United States of America


Teaching: Dr. Agrawal's teaching includes a sequence of two courses for an in-depth study of the sources, transformations and fate of contaminants in the groundwater and its remediation techniques. The first recommended course in the sequence begins in Spring semester. The students should complete 2 semesters of undergraduate chemistry coursework before they register for EES 4560/6560 (Ground Water Contamination).

Research Interest

His research focuses on the abiotic and microbial transformations of environmental pollutants mediated by metals, minerals and microbes. They include: Abiotic degradation mechanisms of organic and inorganic contaminants by: (1) granular and nanoscale zero-valent metals and catalysts, including bimetallic reductants, and (2) minerals, particularly nanoscale magnetite, iron sulfide, and iron clays. Spectroscopic characterization of the reactivity of stabilized bimetallic nanoparticles towards remediation. Biogeochemical transformation and remediation of organic (halogenated hydrocarbons and pharmaceuticals) and inorganic contaminants in wetlands and similar aquatic environments by aerobic (methanotrophic and ammonia-oxidizing) microorganisms. Redox processes in shallow, vegetated aquatic environments, including role of iron and sulfur cycling in wetland soils and in plant roots towards pollutant transformation. Bioenergy and biofuels. Microbiological approaches to convert greenhouse gas (CO2) into hydrocarbon fuels: role of anaerobic microbes in carbon sequestration.


  • K. Qin A. Agrawal, G.C. Struckhoff and M.L. Shelley. 2013. Aerobic Degradation of Chlorinated Hydrocarbons by Ammonia and Nitrite Oxidizers Associated with Wetland Plant Roots. Presentation at Second International Bioremediation and Sustainable Environmental Technologies Symposium, Jacksonville, FL, June 10-13, 2013 (Oral).

  • A. Franze and A. Agrawal. 2014. Abiotic Degradation of Chlorinated Hydrocarbons by Copper-Amended Nanoscale Zero-Valent Iron Stabilized with Carboxymethylcellulose. ACS Central Regional Meeting, Pittsburg, PA, USA, Oct 29–Nov 1, 2014 (Poster).

  • J. Das and A. Agrawal. 2015. Abiotic Reduction of Polychlorinated Hydrocarbons by Bioreduced Iron Oxide. Presentation at Third International Bioremediation and Sustainable Environmental Technologies Symposium, Miami, FL, May 18-21, 2015 (Poster).

Global Experts from United States of America

Global Experts in Subject

Share This Profile